

Problem

• Curvilinear Structure Segmentation (CSS) is to segment binary masks of curvilinear objects such as:

Roads Image

- Two critical aspects:
- (1) preserve topology for connected structures;
- (2) refine features for rendering details.
- Related work

Methods	Topology preserving	Feature refinement		
General semantic segmentation		skip-connection; dilated conv; multi-scale; non-local conv.		
CSS	extra ImageNet features; pre-defined connected-compo nents/holes.			

• **Observation**: most semantic segmentation methods only focus on enhancing features while existing CSS techniques emphasize preserving topology alone.

Joint Topology-preserving and Feature-refinement Network for Curvilinear Structure Segmentation

Mingfei Cheng^{1*}, Kaili Zhao^{1*}, Xuhong Guo², Yajing Xu¹, Jun Guo¹ ¹Beijing University of Posts and Telecommunications, Beijing, China, ²DOCOMO Beijing Communications Laboratories Co., Ltd.

Joint Topology-preserving and Feature-refinement Network (JTFN)

□ Feature Interactive Module (FIM):

- (1) *topology* and boundary connectivity are related;

□ Gated Attention Unit (GAU): supplements & enhances saliencies during *feature refinement*.

□ JTFN iteratively refines predictions.

Method	CrackTree200			Crack500			DRIVE			Roads		
	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
UNet [31]	79.16	78.95	78.42	62.22	68.85	61.83	82.74	80.59	81.41	62.55	52.63	55.70
VGG-UNet [26]	83.49	80.43	81.84	58.18	60.26	51.79	81.17	82.05	81.25	64.79	57.47	59.65
TopoNet [14]	81.85	77.80	79.03	66.81	62.68	60.06	82.94	80.29	81.36	62.25	55.83	57.36
DRU [41]	84.80	77.46	80.49	61.94	71.43	62.82	84.36	80.82	82.30	60.62	56.96	57.42
ITFN (ours)	85.87	82.58	84.19	68.81	69.06	65.76	82.71	83.40	82.81	65.14	59.04	60.65
Method	Correct.	Complete.	Quality.	Correct.	Complete.	Quality	Correct.	Complete.	Quality	Correct.	Complete.	Quality
JNet [31]	82.05	85.93	76.15	31.66	34.98	19.56	55.60	46.29	33.82	62.89	58.06	48.56
VGG-UNet [26]	86.95	85.36	80.08	25.45	32.75	15.67	53.04	33.36	31.25	67.23	61.34	53.98
FopoNet [14]	85.50	83.92	77.36	30.02	37.26	19.83	55.67	46.95	34.22	62.46	61.47	50.77
DRU [41]	87.81	84.02	79.47	30.51	36.02	19.78	56.03	48.86	35.36	62.04	60.42	49.83
TFN (ours)	88.30	87.42	82.96	36.72	39.26	24.12	57.09	49.28	36.02	68.65	63.37	56.05

Code and model are available online: <u>https://github.com/zkl20061823</u>

Datasets:

- (1) Cracks: CrackTree200, Crack500
- (2) Vessel: DRIVE
- (3) Road: Roads

► Metrics:

Pixel-wise: F1/Precisio Topology--wise: Correctness/Complete

Summary 1: The proposed FIM and GAU both help improve results.

Comparisons with SoTA on DRIVE Comparisons on CrackTree200

Method	F1	Correct.	Complete.	Quality	Method	Correct.	Complete.	Quality
Wavelets [36]	76.18	49.18	21.34	17.82	CrackTree [60]	79.0	92.0	73.92
SE [10]	65.84	37.94	16.03	12.59	Reg-AC [35]	10.7	92.83	10.61
CE-Net [12]	71.09	33.69	25.96	17.14	VGG-UNet [26] TopoNet [14]	85.50 86.95	83.92 85.36	77.36 80.08
HED [50]	79.59	43.83	41.57	27.03	ITEN (ours)	883	87 12	82.06
KBoost [5]	80.03	46.89	42.01	28.40		00.5	07.42	02.70
N^4 Fields [11]	80.52	56.50	36.46	28.43	Comparis	sons or	n Roads)
CRFs [28]	78.12	49.39	40.31	28.56				
CS^{2} [27]	81.63	56.62	46.26	34.12	Method	Correct.	Complete.	Quality
DRIU [24]	82.21	47.34	47.25	31.37	Reg-AC [35]	25.37	34.78	17.19
PolicyNet [39]	83.53	57.68	46.39	34.32	RoadTracer [3]	43.50	51.30	30.80
	00.00	01100	10.02	0 110 2	- MSP-Tracer [45]	48.80	55.20	34.30
JTFN (ours)	82.81	57.09	49.28	36.02	JTFN (ours)	68.65	63.37	56.05

Summary 2: JTFN consistently achieves best results compared to SoTA alternatives on three datasets of different applications.

Rev Coctober 11-17

▷ Ablation study:

Base: UNet-like network BO: boundary detection only

	Architecture	+BO	+FIM	+GAU	F1	Quality
on/Recall	Base Base-C	6			78.86 80.44	77.56 79.60
	Base-BO Base-FIM	\checkmark	\checkmark		80.27 82.07	78.79 80.75
eness/ Quality.	Base-GAU			\checkmark	81.84	81.55
	JTFN	\checkmark	\checkmark	✓	84.19	82.96

Segmentations. and indicate connectivity and rendering details.