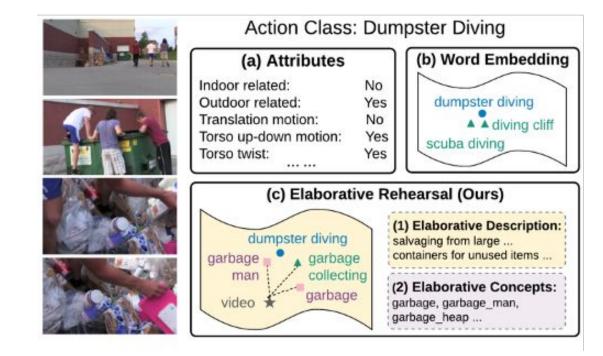

Alignment-Uniformity aware Representation Learning for Zero-shot Video Classification ¹Tencent TEG Machine Learning Platform Department ²Beijing University of Posts and Telecommunications

CVPR JUNE NEW ORLEANS


Introduction

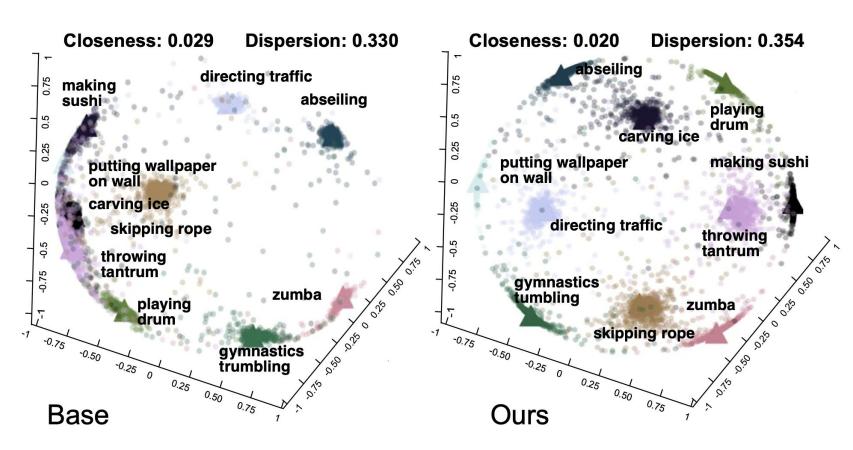
SoTA zero-shot video classification (ZSVC)

E2E: Align visual and semantics features [r1].

> Contributions

ER: Expand class names by hand-crafted annotations [r2]

Both **E2E** and **ER** learn a unified visual and semantic representation.


But, only alignment property of the representation is considered while uniformity that contributes to generalization is neglected.

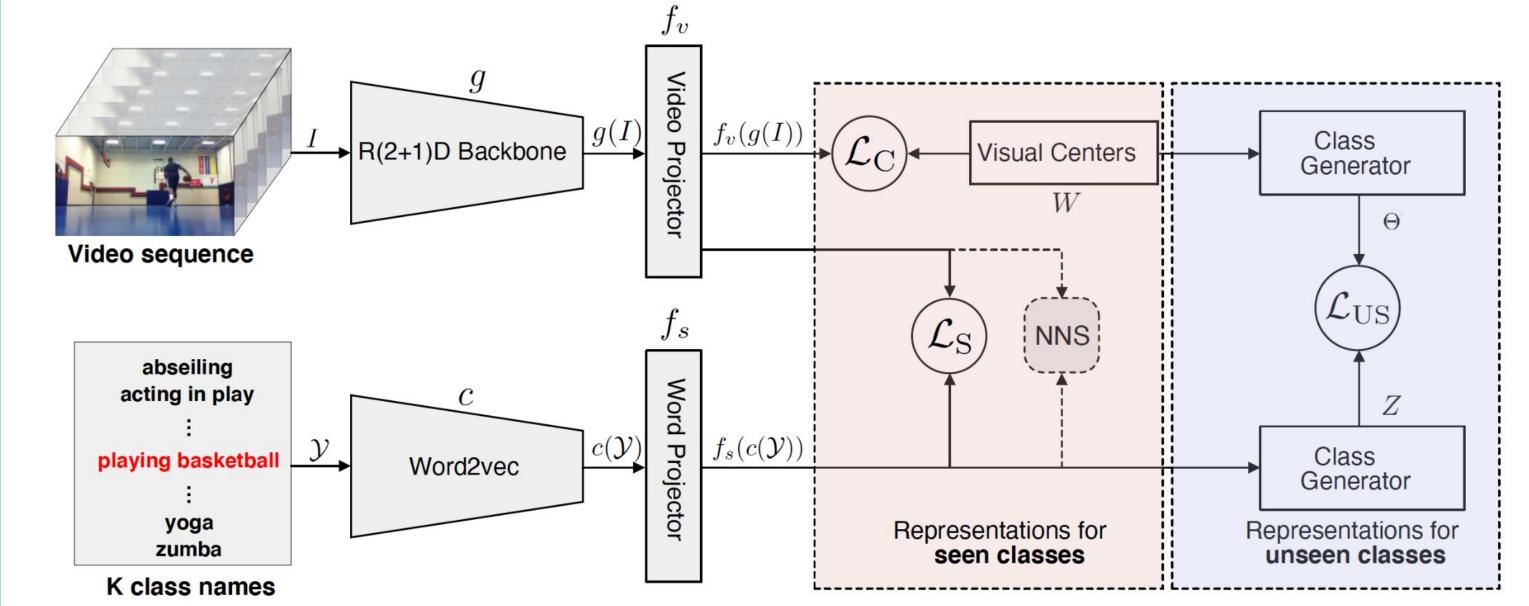
ER tries to learn unseen classes by expanding existing class names.

But, amount of extra annotations are required.

[r1] Rethinking zero-shot video classification: End-to-end training for realistic applications, CVPR 2020.

[r2] Elaborative rehearsal for zero-shot action recognition, ICCV 2021.

The unified representations of visual and semantics.


- (1) Propose a unified visual and semantic representation awareness of alignment and uniformity jointly.
- (2) Explicitly generate synthetic "unseen" classes via our class generator.
- (3) Present closeness and dispersion to quantify alignment and uniformity, serving as new measurements of model generalizability.
- (4) Achieve state-of-the-art performance in an end-to-end manner.

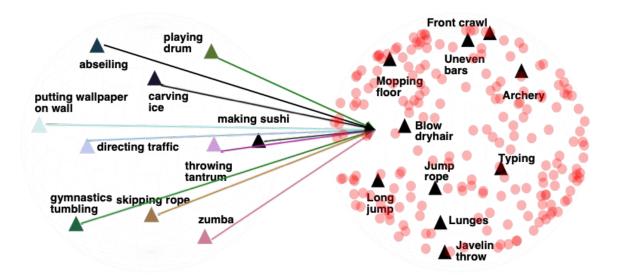
Shi Pu^{1*}

Kaili Zhao^{2*}

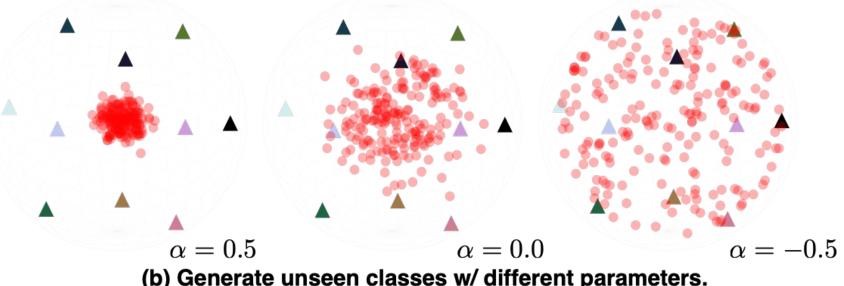
Alignment-Uniformity aware Representation Learning (AURL) Experiments

> AURL architecture

> Alignment-uniformity aware loss to regularize the representations

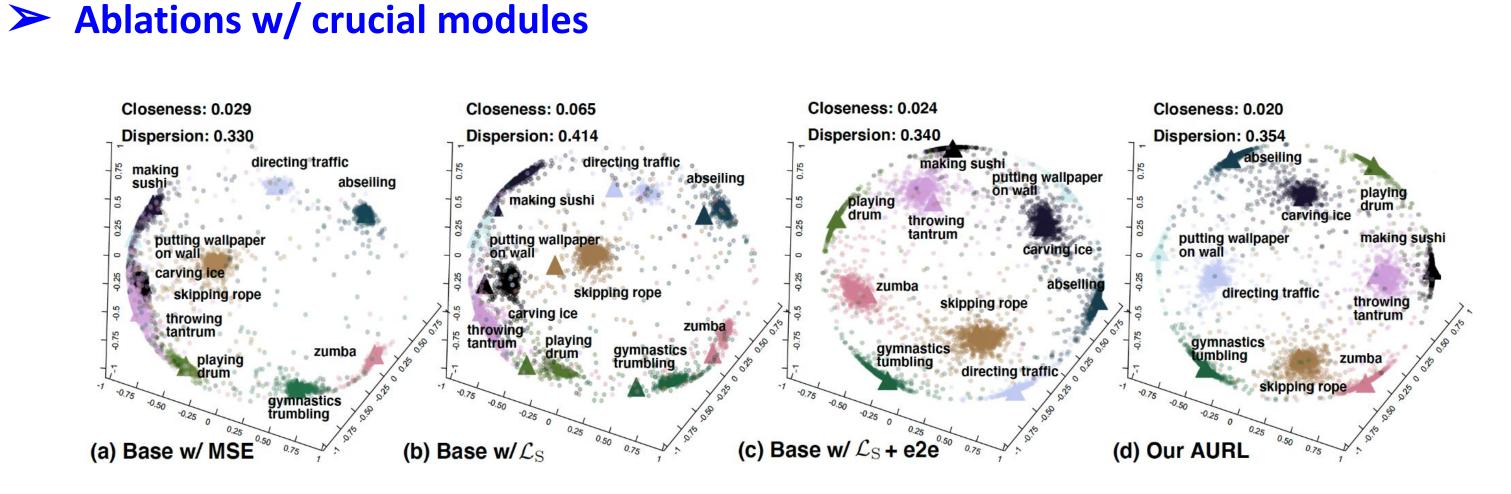

• Supervised contrastive loss enables alignment and uniformity properties.

$$\begin{split} \mathcal{L}^{sup} = &-\log[\frac{\exp\left[\lambda \sin(v_{y_i}, s_{y_i})\right]}{\sum_{y_j \in \mathcal{Y}} \exp\left[\lambda \sin(v_{y_i}, s_{y_j})\right]}] = \lambda \mathrm{SP}_{\lambda}[\underbrace{-\sin(v_{y_i}, s_{y_i})}_{\mathrm{alignment}} + \frac{1}{\lambda}\underbrace{\mathrm{LSE}(\lambda \sin(v_{y_i}, s_{y_j})_{y_j \in \mathcal{Y} \setminus y_i})}_{\mathrm{uniformity}}],\\ \mathrm{where}, \quad \mathrm{SP}_{\lambda}(x) = \frac{1}{\lambda}\log(1 + \exp(\lambda x)), \quad \mathrm{LSE}(x) = \log(\sum_{x \in \mathcal{X}} \exp(x)). \end{split}$$


• Apply the supervised contrastive loss for seen and synthetic unseen classes $\mathcal{L}_{ ext{contrast}} = \mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{US}}$

$$= -\log\left[\frac{\exp\left[\lambda\cos(v_{y_i}, s_{y_i})\right]}{\sum_{y_j \in \mathcal{Y}} \exp\left[\lambda\cos(v_{y_i}, s_{y_j})\right]}\right] + \frac{1}{K_u} \sum_{u_i \in \mathcal{U}} -\log\left[\frac{\exp\left[\lambda\cos(v_{y_i}, s_{y_i})\right]}{\sum_{u_j \in \mathcal{U}} e^{i \lambda_i - i \lambda_i}}\right]$$

• Class generator to synthesize unseen classes.



(a) Synthetic classes can cover test classes.

Mao Zheng¹

 $[\lambda \cos(\Theta_{u_i}, Z_{u_i})]$ $\exp\left[\lambda\cos(\Theta_{u_i}, Z_{u_j})\right]^{\perp}$

Method	Ls e2e	\mathcal{L}_{US} +CG	Clo- se.	Dis- per.	UCF top-1	HMDB top-1	>	Сс	ompariso	ns w	ith So	TA a	lterna	tives
Base w/ MSE			0.30	0.09	35.1	21.3		-		and a				
Base w/ \mathcal{L}_{S}	\checkmark		0.45	0.29	40.3	24.2			Method	Test splits	Train dataset	UCF top-1	Train dataset	HMDB top-1
Base w/ \mathcal{L}_{S} + e2e	\checkmark		0.30	0.29	43.2	26.2		-				37.6		26.9
AURL (ours)	\checkmark	\checkmark	0.29	0.32	44.4	27.4			SoTA* [3] AURL*	1	Kinetics Kinetics	46.8	Kinetics Kinetics	20.9 31.7
AURL w/o CG.	\checkmark	\checkmark	0.33	0.32	43.7	25.8		_	Obj2act [16]	3	_	30.3	_	15.6
									SAOE [27]	3	-	32.8	-	-
> Takeaways						OPCL [13]	3	-	36.3	-	-			
								MUFI [35]	3	Kinetics+	56.3	Kinetics+	31.0	
1 Uniformaity avagable boundary of non-non-stations									AURL	3	Kinetics	60.9	Kinetics	40.4
 Uniformity expands borders of representations 							-	TARN [2]	30	UCF	23.2	HMDB	19.5	
as much as possible, and has been validated its							Act2Vec [14]	_	UCF	22.1	HMDB	23.5		
							SAOE [27]	10	-	40.4	-	-		
effectiveness in model generalizability of ZSVC.							PSGNN [13]	50	UCF	43.0	HMDB	32.6		
2. Alignment and uniformity jointly benefit ZSVC.							OPCL [13]	10	-	47.3	-	-		
							0.		SoTA* [3]	10	Kinetics	48.0	Kinetics	32.7
3. Our code is available at								DASZL [19]	10	-	48.9	-	-	
https://github.com/ShipuLoveMili/CVPR2022-A						Δ_Δ		ER [6]	50	UCF	51.8	HMDB	35.3	
									AURL*	10	Kinetics	58.0	Kinetics	39.0

- <u>URL</u>

$$\text{Closeness} = \frac{1}{K} \sum_{y_i \in \mathcal{Y}} \left[\frac{1}{N_{y_i}} \sum_{n=1}^{N_{y_i}} (1 - \cos\left(v_{y_i}^n, s_{y_i}^n\right)) \right] \qquad \text{Dispersion} = \frac{1}{K} \sum_{y_i \in \mathcal{Y}} \min_{y_k \in \mathcal{Y} \setminus y_i} (1 - \cos(\bar{v}_{y_i}, \bar{v}_{y_k})) \right]$$

 $\operatorname{argmax} \cos(f_v(g(I^t)), s_{y^t})$ $y^t \in \mathcal{Y}^t$

• Closeness and dispersion score to quantify the alignment and uniformity.

• Inference with a strict label requirement that excludes highly overlapped classes.

$$\forall y \in \mathcal{Y}, \min_{y^t \in \mathcal{Y}^t} (1 - \cos(c_y, c_{y^t})) > \tau$$